

Kai. Rasika Mahavidyalaya, Deoni department of mathematics

Course Outcomes (COs) and Program Outcomes (POs)

B.Sc. FY		
Topics in Algebra	 CO1: Students will be able to perform matrix operations and use them to solve systems of linear equations effectively. CO2: Students will understand and apply basic set operations and concepts, including unions, intersections, and complements. CO3: Students will identify different types of relations and functions, and apply them to solve mathematical problems. CO4: Students will solve linear systems using methods such as substitution, elimination, and matrix operations. 	
Calculus using SageMath	 CO1: Students will use SageMath to perform differentiation and integration of functions. CO2: Students will solve calculus problems involving limits, continuity, and series expansions using SageMath. CO3: Students will apply SageMath to visualize and analyze calculus concepts such as graphs of functions and their derivatives. 	
Geometry	 CO1: Students will be able to apply fundamental theorems of Euclidean geometry in solving problems. CO2: Students will demonstrate an understanding of geometric proofs and constructions. CO3: Students will use geometric principles to model and solve practical problems. 	
Integral Calculus	 CO1: Students will be proficient in various techniques of integration, including substitution and integration by parts. CO2: Students will apply integration techniques to solve problems in areas such as physics and engineering. CO3: Students will use integral calculus to compute areas, volumes, and other applications. 	
MATLAB	 CO1: Students will be able to write and debug MATLAB scripts for mathematical computations. CO2: Students will use MATLAB to visualize mathematical data and functions. CO3: Students will apply MATLAB to solve complex mathematical problems and analyze results. 	

	B.Sc. SY
Real Analysis	 CO1: Students will understand and apply the concepts of limits, continuity, and differentiability in real analysis. CO2: Students will prove and use key theorems, such as the Bolzano-Weierstrass theorem and the Intermediate Value Theorem. CO3: Students will apply real analysis concepts to solve problems involving sequences and series.
•	Group/Ring Theory
1. Group Theory:	 CO1: Students will be able to define and work with groups, subgroups, and group homomorphisms. CO2: Students will solve problems involving group properties and structures. CO3: Students will apply group theory concepts to solve problems in abstract algebra and related fields.
Ordinary Differential Equations (ODE	 CO1: Students will solve first-order and second-order ordinary differential equations using various methods. CO2: Students will apply ODE solutions to real-world problems, including engineering and physics applications. CO3: Students will use qualitative and numerical methods to analyze ODEs.
2. Ring Theory:	 CO1: Students will understand the structure of rings, including ideals and ring homomorphisms. CO2: Students will solve problems involving ring properties and operations. CO3: Students will apply ring theory to problems in number theory and algebra.
Partial Differential Equations (PDE)	 CO1: Students will understand and solve basic partial differential equations, including the heat equation and wave equation. CO2: Students will apply boundary conditions and initial conditions to solve PDE problems. CO3: Students will use PDE solutions in modeling physical phenomena.

	B.Sc. TY
Metric Spaces:	 CO1: Students will understand the concept of a metric space and related notions such as convergence and continuity. CO2: Students will solve problems involving open and closed sets in metric spaces. CO3: Students will apply metric space concepts to analyze and solve problems in analysis.
Linear Algebra	 CO1: Students will understand and work with vector spaces, including bases and dimensions. CO2: Students will solve problems involving linear transformations and eigenvalues. CO3: Students will apply linear algebra concepts to solve problems in various fields, including computer science and engineering.
Numerical Analysis	 CO1: Students will apply numerical methods to approximate solutions of mathematical problems. CO2: Students will analyze the accuracy and efficiency of different numerical algorithms. CO3: Students will use numerical analysis techniques to solve real-world problems in science and engineering.
Complex Analysis	 CO1: Students will understand and work with complex functions, including differentiation and integration in the complex plane. CO2: Students will apply complex analysis techniques to solve problems involving contour integration and residues. CO3: Students will use complex analysis to solve problems in engineering and physics.
Integral Transform	 CO1: Students will understand and apply Fourier and Laplace transforms to solve differential equations and analyze signals. CO2: Students will solve problems involving the inverse transforms and their applications. CO3: Students will use integral transforms in practical applications such as signal processing and control theory.
Number Theory	 CO1: Students will understand and apply basic concepts of number theory, including divisibility, prime numbers, and congruences. CO2: Students will solve problems involving Diophantine equations and modular arithmetic. CO3: Students will use number theory concepts to solve problems in cryptography and coding theory.

Program Outcomes (POs)

- 1. **Critical Thinking and Problem Solving:** Graduates will demonstrate the ability to apply mathematical reasoning and problem-solving techniques to complex problems.
- 2. **Mathematical Proficiency:** Graduates will have a solid understanding of core mathematical concepts, including algebra, calculus, geometry, and analysis.
- 3. **Technical Skills:** Graduates will be proficient in using mathematical software and tools (e.g., MATLAB, SageMath) to perform computations and analyze data.
- 4. **Analytical Skills:** Graduates will be able to analyze and interpret mathematical data, models, and theories, applying them to real-world scenarios.
- 5. **Communication Skills:** Graduates will effectively communicate mathematical ideas and solutions both verbally and in writing.
- 6. Ethical and Professional Responsibility: Graduates will demonstrate an understanding of ethical issues and professional standards in mathematics and its applications.
- 7. Lifelong Learning: Graduates will be prepared for continued learning and professional development in mathematics and related fields.